Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Martin U. Schmidt, ${ }^{\text {a }}$ Guido Wagner ${ }^{\text {a }}$ and Michael Bolte ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt,

Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, J. W. Goethe-Universität Frankfurt,

Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.030$
$w R$ factor $=0.070$
Data-to-parameter ratio $=18.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Redetermination of 3-hydroxy-2-naphthoic acid

The title compound, $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{3}$, previously reported by Gupta \& Dutta [Cryst. Struct. Commun. (1975), 4, 37-40] has been rerefined against new intensity data. Geometric parameters of the C and O atoms agree quite well. However, the positions of the hydroxyl H atoms differ slightly. Furthermore, the results of the present structure determination are of significantly higher precision.

Comment

3-Hydroxy-2-naphthoic acid, (I), also known as β-oxynaphthoic acid (BONA, BONS), is produced industrially in a 1000 ton scale. It is used for syntheses of red azo pigments (Herbst \& Hunger, 1997). Our intention was to synthesize its Cu salt from CuSO_{4} and 3-hydroxy-2-naphthoic acid. However, it turned out that the resulting crystals were composed of the starting material 3-hydroxy-2-naphthoic acid.

(I)

A perspective view of (I) is shown in Fig. 1. The original structure was reported by Gupta \& Dutta (1975). The geometric parameters of the C and O atoms of both determinations agree quite well, but the positions of the hydroxyl H atoms differ slightly. A least-squares fit between all non-H atoms of the two structures gives an r.m.s. deviation of

Figure 1
Perspective view of (I), with the atom-numbering scheme. Displacement ellipsoids are at the 50% probability level.

Received 11 July 2002 Accepted 16 July 2002 Online 25 July 2002

Figure 2
Least-squares fit of the present structure determination (full lines) with that performed by Gupta \& Dutta (1975) (dashed lines).
$0.0337 \AA$ (Fig. 2). In addition, the present work is of significantly improved precision. The molecules are essentially planar (r.m.s. deviation for all non-H atoms: $0.0265 \AA$) and crystallize as hydrogen-bonded dimers. Furthermore, an intramolecular hydrogen bond is formed (Table 1).

Experimental

In a test tube, a spatula tip of 3-hydroxy-2-naphthoic acid was dissolved in diethyl ether. In a second test tube, a saturated solution of copper(II) sulfate was prepared. Then, a layer of the 3-hydroxy-2naphthoic acid solution was placed over the CuSO_{4} solution in the test tube. After 4 d , the diethyl ether had evaporated and small yellow crystals of (I) were obtained.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{3}$	$D_{x}=1.451 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=188.17$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 9721
$a=9.9942(10) \AA$	reflections
$b=11.6591(11) \AA$	$\theta=3.5-29.8^{\circ}$
$c=7.6298(9) \AA$	$\mu=0.11 \mathrm{~mm}^{-1}$
$\beta=104.392(9)^{\circ}$	$T=173(2) \mathrm{K}$
$V=861.15(16) \AA^{3}$	Plate, light yellow
$Z=4$	$0.36 \times 0.34 \times 0.15 \mathrm{~mm}$

$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{3}$
$M_{r}=188.17$
Monoclinic, $P 2_{1} / c$ $a=9.9942$ (10) A
$b=11.6591$ (11) \AA
$c=7.6298$ (9) A
$V=861.15(16) \AA^{3}$
$Z=4$
$D_{x}=1.451 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
Cell parameters from 9721
reflections
$\mu=0.11 \mathrm{~mm}^{-}$
$T=173$ (2) K
$0.36 \times 0.34 \times 0.15 \mathrm{~mm}$

Data collection

Stoe IPDS II two-circle
diffractometer
ω scans
Absorption correction: none
12620 measured reflections
2450 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.070$
$S=0.96$
2450 reflections
136 parameters
H atoms treated by a mixture of independent and constrained refinement

1540 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=29.8^{\circ}$
$h=-13 \rightarrow 13$
$k=-16 \rightarrow 16$
$l=-10 \rightarrow 10$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0414 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.27 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.011 (2)

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H11 $\cdots \mathrm{O}^{\mathrm{i}}$	$0.936(19)$	$1.715(19)$	$2.6484(11)$	$174.3(18)$
O3-H10 \cdots O2	$0.929(18)$	$1.787(18)$	$2.6326(11)$	$149.9(16)$
Symmer				

Symmetry code: (i) $2-x, 1-y, 2-z$.

All H atoms were located in difference Fourier syntheses. H atoms bonded to C atoms were refined with fixed individual displacement parameters $\left[U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$, using a riding model with $\mathrm{C}-$ $\mathrm{H}_{\text {methyl }}=0.95 \AA$. H atoms bonded to O atoms were refined freely. The $\mathrm{O}-\mathrm{H}$ lengths are in the range $0.929(18)-0.936$ (19) \AA.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991).

References

Gupta, M. P. \& Dutta, B. P. (1975). Cryst. Struct. Commun. 4, 37-40.
Herbst, W. \& Hunger, K. (1997). Industrial Organic Pigments, 2nd ed. Weinheim: VCH.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

